Statistical Machine Learning CMU Spring 2016
Larry Wasserman

statistical_machine_learning_cmu_spring2016 (39 files)
clustering.pdf 16.64MB
Concentration-of-Measure.pdf 282.22kB
densityestimation.pdf 1.45MB
dimension_reduction.pdf 10.27MB
functionspaces.pdf 224.61kB
GraphicalModels.pdf 1.99MB
Lecture 01 - Review-zcMnu-3wkWo.mp4 232.05MB
Lecture 02 - Function Spaces-M6628Cm12YQ.mp4 297.19MB
Lecture 03 - Concentration of Measure-WalRR9lcZcc.mp4 603.08MB
Lecture 04 - Concentration of Measure-wbyKfeQMrTc.mp4 1.47GB
Lecture 05 - Linear Regression-eltYWhGh9wY.mp4 1.51GB
Lecture 06 - Nonparametric Regression-e9mN6UH5QIQ.mp4 1.57GB
Lecture 07 - Nonparametric Regression-XB6uu-sHUMM.mp4 703.65MB
Lecture 08 - Trend filtering-IXvTUiYB1Ec.mp4 1.63GB
Lecture 09 - Linear Classification-aB3P4yGvEOE.mp4 1.64GB
Lecture 10 - Nonparametric Classification-3we__CnE-xQ.mp4 1.33GB
Lecture 11 - Minimax Theory-25mNchtk9eE.mp4 1.61GB
Lecture 12 - Minimax Theory-UdoS-K2puu4.mp4 1.49GB
Lecture 13 - Nonparametric Bayes--8kShV_24tM.mp4 1.22GB
Lecture 14 - Boosting-cWpYY2yqYmU.mp4 1.56GB
Lecture 15 - Clustering-SRk90fwsZGQ.mp4 777.46MB
Lecture 16 - Clustering-JhR6KdqQAxs.mp4 778.96MB
Lecture 17 - Clustering-D4kJkL3fyAg.mp4 1.62GB
Lecture 18 - Graphical Models-9z0gebvwb3k.mp4 693.74MB
Lecture 19 - Graphical Models-OcFMSWQstsE.mp4 1.58GB
Lecture 20 - Graphical Models-xNh1s6nql30.mp4 855.54MB
Lecture 21 - Graphical Models-z4q8DMB6cXk.mp4 1.57GB
Lecture 22 - Dimension Reduction-xtgayLRW5RM.mp4 1.89GB
Lecture 23 - Dimension Reduction & Random Matrix Theory-3qRVzS-7MOs.mp4 852.05MB
Lecture 24 - Random Matrix Theory & Differential Privacy-ymqZMAvaVpw.mp4 687.92MB
linearclassification.pdf 2.43MB
LinearRegression.pdf 259.51kB
minimax.pdf 353.06kB
nonparbayes.pdf 313.51kB
nonparclass.pdf 325.89kB
NonparRegression.pdf 650.95kB
random_matrix_theory.pdf 190.86kB
Review.pdf 154.86kB
syllabus.pdf 118.69kB
Type: Course
Tags:

Bibtex:
@article{,
title= {Statistical Machine Learning CMU Spring 2016},
keywords= {},
journal= {},
author= {Larry Wasserman },
year= {},
url= {http://www.stat.cmu.edu/~larry/=sml/},
license= {},
abstract= {Statistical Machine Learning is a second graduate level course in advanced machine learning, assuming students have taken Machine Learning (10-715) and Intermediate Statistics (36-705). The course covers methodology and theoretical foundations. 

Function Spaces 

Concentration of Measure 

Linear Regression 

Nonparametric Regression 

Linear Classification 

Nonparametric Classification 

Minimax Theory 

Density Estimation 

Nonparametric Bayes 

Clustering 

Graphical Models 

Dimension Reduction

Random Matrix Theory},
superseded= {},
terms= {}
}


Support
Academic Torrents!

Disable your
ad-blocker!

10 day statistics (8 downloads)

Average Time 6 hours, 49 minutes, 00 seconds
Average Speed 1.15MB/s
Best Time 32 minutes, 56 seconds
Best Speed 14.27MB/s
Worst Time 1 days,18 hours, 33 minutes, 39 seconds
Worst Speed 183.98kB/s
Report