Statistical Machine Learning CMU Spring 2016
Larry Wasserman



Support
Academic Torrents!

Disable your
ad-blocker!

statistical_machine_learning_cmu_spring2016 (39 files)
clustering.pdf16.64MB
Concentration-of-Measure.pdf282.22kB
densityestimation.pdf1.45MB
dimension_reduction.pdf10.27MB
functionspaces.pdf224.61kB
GraphicalModels.pdf1.99MB
Lecture 01 - Review-zcMnu-3wkWo.mp4232.05MB
Lecture 02 - Function Spaces-M6628Cm12YQ.mp4297.19MB
Lecture 03 - Concentration of Measure-WalRR9lcZcc.mp4603.08MB
Lecture 04 - Concentration of Measure-wbyKfeQMrTc.mp41.47GB
Lecture 05 - Linear Regression-eltYWhGh9wY.mp41.51GB
Lecture 06 - Nonparametric Regression-e9mN6UH5QIQ.mp41.57GB
Lecture 07 - Nonparametric Regression-XB6uu-sHUMM.mp4703.65MB
Lecture 08 - Trend filtering-IXvTUiYB1Ec.mp41.63GB
Lecture 09 - Linear Classification-aB3P4yGvEOE.mp41.64GB
Lecture 10 - Nonparametric Classification-3we__CnE-xQ.mp41.33GB
Lecture 11 - Minimax Theory-25mNchtk9eE.mp41.61GB
Lecture 12 - Minimax Theory-UdoS-K2puu4.mp41.49GB
Lecture 13 - Nonparametric Bayes--8kShV_24tM.mp41.22GB
Lecture 14 - Boosting-cWpYY2yqYmU.mp41.56GB
Lecture 15 - Clustering-SRk90fwsZGQ.mp4777.46MB
Lecture 16 - Clustering-JhR6KdqQAxs.mp4778.96MB
Lecture 17 - Clustering-D4kJkL3fyAg.mp41.62GB
Lecture 18 - Graphical Models-9z0gebvwb3k.mp4693.74MB
Lecture 19 - Graphical Models-OcFMSWQstsE.mp41.58GB
Lecture 20 - Graphical Models-xNh1s6nql30.mp4855.54MB
Lecture 21 - Graphical Models-z4q8DMB6cXk.mp41.57GB
Lecture 22 - Dimension Reduction-xtgayLRW5RM.mp41.89GB
Lecture 23 - Dimension Reduction & Random Matrix Theory-3qRVzS-7MOs.mp4852.05MB
Lecture 24 - Random Matrix Theory & Differential Privacy-ymqZMAvaVpw.mp4687.92MB
linearclassification.pdf2.43MB
LinearRegression.pdf259.51kB
minimax.pdf353.06kB
nonparbayes.pdf313.51kB
nonparclass.pdf325.89kB
NonparRegression.pdf650.95kB
random_matrix_theory.pdf190.86kB
Review.pdf154.86kB
syllabus.pdf118.69kB
Type: Course
Tags:

Bibtex:
@article{,
title= {Statistical Machine Learning CMU Spring 2016},
keywords= {},
journal= {},
author= {Larry Wasserman },
year= {},
url= {http://www.stat.cmu.edu/~larry/=sml/},
license= {},
abstract= {Statistical Machine Learning is a second graduate level course in advanced machine learning, assuming students have taken Machine Learning (10-715) and Intermediate Statistics (36-705). The course covers methodology and theoretical foundations. 

Function Spaces 

Concentration of Measure 

Linear Regression 

Nonparametric Regression 

Linear Classification 

Nonparametric Classification 

Minimax Theory 

Density Estimation 

Nonparametric Bayes 

Clustering 

Graphical Models 

Dimension Reduction

Random Matrix Theory},
superseded= {},
terms= {}
}