The Cityscapes Dataset for Semantic Urban Scene Understanding
Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt

Cityscapes (16 files)
README.md 1.54kB
README.txt 1.54kB
data/camera_trainextra.zip 8.16MB
data/camera_trainvaltest.zip 1.95MB
data/gtBbox_cityPersons_trainval.zip 2.26MB
data/gtCoarse.zip 1.32GB
data/gtFine_trainvaltest.zip 252.57MB
data/leftImg8bit_blurred.zip 11.49GB
data/leftImg8bit_demoVideo.zip 6.98GB
data/leftImg8bit_trainextra.zip 47.23GB
data/leftImg8bit_trainvaltest.zip 11.59GB
data/vehicle_trainextra.zip 8.01MB
data/vehicle_trainvaltest.zip 1.91MB
samples_0.png 1.73MB
samples_1.png 1.69MB
samples_2.png 1.89MB
Type: Dataset
Tags:

Bibtex:
@inproceedings{cordts2016cityscapes,
title= {The Cityscapes Dataset for Semantic Urban Scene Understanding},
author= {Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt},
booktitle= {Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year= {2016},
abstract= {The Cityscapes Dataset focuses on semantic understanding of urban street scenes. In the following, we give an overview on the design choices that were made to target the dataset’s focus.},
keywords= {},
terms= {},
license= {},
superseded= {},
url= {}
}

Hosted by users:

10 day statistics (3 downloads taking more than 30 seconds)

Average Time 28 minutes, 15 seconds
Average Speed 46.55MB/s
Best Time 8 minutes, 06 seconds
Best Speed 162.34MB/s
Worst Time 39 minutes, 51 seconds
Worst Speed 33.00MB/s
Report