The Representativeness of Automated Web Crawls as a Surrogate for Human Browsing
Zeber, David and Bird, Sarah and Oliveira, Camila and Rudametkin, Walter and Segall, Ilana and Wolls\'{e}n, Fredrik and Lopatka, Martin

folder webconf-crawl-representativeness-data (54 files)
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_9.tar 335.81MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_8.tar 321.15MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_7.tar 342.01MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_6.tar 306.59MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_5.tar 409.84MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_44.tar 340.95MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_43.tar 353.58MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_42.tar 344.30MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_41.tar 209.45MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_40.tar 362.33MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_4.tar 401.73MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_39.tar 325.83MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_38.tar 321.72MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_37.tar 386.23MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_36.tar 316.05MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_35.tar 318.82MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_34.tar 368.16MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_33.tar 331.07MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_32.tar 358.10MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_31.tar 318.15MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_30.tar 328.95MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_3.tar 239.42MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_29.tar 315.46MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_28.tar 338.98MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_27.tar 303.99MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_26.tar 358.99MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_25.tar 333.54MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_24.tar 339.41MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_23.tar 363.54MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_22.tar 318.04MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_21.tar 354.32MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_20.tar 301.38MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_2.tar 336.61MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_19.tar 306.63MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_18.tar 301.50MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_17.tar 284.52MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_16.tar 335.82MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_15.tar 308.53MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_14.tar 327.89MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_13.tar 300.74MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_12.tar 299.66MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_11.tar 355.26MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_10.tar 299.17MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_1.tar 251.59MB
filejestr-vs-crawl-n-variability/raw_data/alexa_top_1k/openwpm_crawl_0.tar 23.61MB
file2019-07-jestr-vs-crawl/simulcrawl-platform-4.tar 1.79GB
file2019-07-jestr-vs-crawl/simulcrawl-platform-3.tar 1.76GB
file2019-07-jestr-vs-crawl/simulcrawl-platform-2.tar 1.92GB
file2019-07-jestr-vs-crawl/simulcrawl-platform-1.tar 1.52GB
Too many files! Click here to view them all.
Type: Dataset
Tags: Tracking, Web Crawling, Online Privacy, Browser Fingerprinting, World Wide Web

Bibtex:
@inproceedings{10.1145/3366423.3380104,
author= {Zeber, David and Bird, Sarah and Oliveira, Camila and Rudametkin, Walter and Segall, Ilana and Wolls\'{e}n, Fredrik and Lopatka, Martin},
title= {The Representativeness of Automated Web Crawls as a Surrogate for Human Browsing},
year= {2020},
isbn= {9781450370233},
publisher= {Association for Computing Machinery},
address= {New York, NY, USA},
url= {https://doi.org/10.1145/3366423.3380104},
doi= {10.1145/3366423.3380104},
booktitle= {Proceedings of The Web Conference 2020},
pages= {167–178},
numpages= {12},
keywords= {Web Crawling, Online Privacy, Tracking, Browser Fingerprinting, World Wide Web},
location= {Taipei, Taiwan},
series= {WWW ’20},
abstract= {Large-scale Web crawls have emerged as the state of the art for studying characteristics of the Web. In particular, they are a core tool for online tracking research. Web crawling is an attractive approach to data collection, as crawls can be run at relatively low infrastructure cost and don’t require handling sensitive user data such as browsing histories. However, the biases introduced by using crawls as a proxy for human browsing data have not been well studied. Crawls may fail to capture the diversity of user environments, and the snapshot view of the Web presented by one-time crawls does not reflect its constantly evolving nature, which hinders reproducibility of crawl-based studies. In this paper, we quantify the repeatability and representativeness of Web crawls in terms of common tracking and fingerprinting metrics, considering both variation across crawls and divergence from human browser usage. We quantify baseline variation of simultaneous crawls, then isolate the effects of time, cloud IP address vs. residential, and operating system. This provides a foundation to assess the agreement between crawls visiting a standard list of high-traffic websites and actual browsing behaviour measured from an opt-in sample of over 50,000 users of the Firefox Web browser. Our analysis reveals differences between the treatment of stateless crawling infrastructure and generally stateful human browsing, showing, for example, that crawlers tend to experience higher rates of third-party activity than human browser users on loading pages from the same domains.},
terms= {},
license= {Mozilla Public License 2.0},
superseded= {}
}


Send Feedback