MIT OCW 6.451 Principles of Digital Communication II Spring 05
David Forney

MIT6.451S05 (25 files)
ocw-6.451-02feb05-220k.mp4 492.85MB
ocw-6.451_4-261-02mar2005-220k.mp4 516.73MB
ocw-6.451_4-261-02may2005-220k.mp4 493.64MB
ocw-6.451_4-261-04apr2005-220k.mp4 502.92MB
ocw-6.451_4-261-04may2005-220k.mp4 420.41MB
ocw-6.451_4-261-06apr2005-220k.mp4 511.69MB
ocw-6.451_4-261-07feb2005-220k.mp4 471.11MB
ocw-6.451_4-261-07mar2005-220k.mp4 515.63MB
ocw-6.451_4-261-09feb2005-220k.mp4 511.04MB
ocw-6.451_4-261-09mar2005-220k.mp4 500.42MB
ocw-6.451_4-261-09may2005-220k.mp4 503.29MB
ocw-6.451_4-261-11apr2005-220k.mp4 499.54MB
ocw-6.451_4-261-11may2005-220k.mp4 525.50MB
ocw-6.451_4-261-13apr2005-220k.mp4 516.17MB
ocw-6.451_4-261-14feb2005-220k.mp4 468.16MB
ocw-6.451_4-261-14mar2005-220k.mp4 572.64MB
ocw-6.451_4-261-16feb2005-220k.mp4 584.55MB
ocw-6.451_4-261-20apr2005-220k.mp4 509.02MB
ocw-6.451_4-261-22feb2005-220k.mp4 507.11MB
ocw-6.451_4-261-23feb2005-220k.mp4 502.41MB
ocw-6.451_4-261-25apr2005-220k.mp4 488.71MB
ocw-6.451_4-261-27apr2005-220k.mp4 484.62MB
ocw-6.451_4-261-28feb2005-220k.mp4 526.18MB
ocw-6.451_4-261-28mar2005-220k.mp4 508.08MB
ocw-6.451_4-261-30mar2005-220k.mp4 509.38MB
Type: Course
Tags:MIT6.451S05

Bibtex:
@article{,
title= {MIT OCW 6.451 Principles of Digital Communication II Spring 05},
keywords= {MIT6.451S05},
journal= {Massachusetts Institute of Technology: MIT OpenCourseWare},
author= {David Forney},
year= {2005},
url= {http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-451-principles-of-digital-communication-ii-spring-2005/},
license= {BY-NC-SA},
abstract= {==Course Description
This course is the second of a two-term sequence with 6.450. The focus is on coding techniques for approaching the Shannon limit of additive white Gaussian noise (AWGN) channels, their performance analysis, and design principles. After a review of 6.450 and the Shannon limit for AWGN channels, the course begins by discussing small signal constellations, performance analysis and coding gain, and hard-decision and soft-decision decoding. It continues with binary linear block codes, Reed-Muller codes, finite fields, Reed-Solomon and BCH codes, binary linear convolutional codes, and the Viterbi algorithm.

More advanced topics include trellis representations of binary linear block codes and trellis-based decoding; codes on graphs; the sum-product and min-sum algorithms; the BCJR algorithm; turbo codes, LDPC codes and RA codes; and performance of LDPC codes with iterative decoding. Finally, the course addresses coding for the bandwidth-limited regime, including lattice codes, trellis-coded modulation, multilevel coding and shaping. If time permits, it covers equalization of linear Gaussian channels.

Lecture 1: Introduction Sampling Theorem
Lecture 2: Performance of Small Signal Constellations
Lecture 3: Hard-decision and Soft-decision Decoding
Lecture 4: Hard-decision and Soft-decision Decoding
Lecture 5: Introduction to Binary Block Codes
Lecture 6: Introduction to Binary Block Codes
Lecture 7: Introduction to Finite Fields
Lecture 8: Introduction to Finite Fields
Lecture 9: Introduction to Finite Fields
Lecture 10: Reed-Solomon Codes
Lecture 11: Reed-Solomon Codes
Lecture 12: Reed-Solomon Codes
Lecture 13: Introduction to Convolutional Codes
Lecture 14: Introduction to Convolutional Codes
Lecture 15: Trellis Representations of Binary Linear Block Codes
Lecture 16: Trellis Representations of Binary Linear Block Codes
Lecture 17: Codes on Graphs
Lecture 18: Codes on Graphs
Lecture 19: The Sum-Product Algorithm
Lecture 20: Turbo, LDPC, and RA Codes
Lecture 21: Turbo, LDPC, and RA Codes
Lecture 22: Lattice and Trellis Codes
Lecture 23: Lattice and Trellis Codes
Lecture 24: Linear Gaussian Channels
Lecture 25: Linear Gaussian Channels


},
tos= {},
superseded= {},
terms= {}
}


Support
Academic Torrents!

Disable your
ad-blocker!

10 day statistics (2 downloads taking more than 30 seconds)

Average Time 1 hours, 48 minutes, 34 seconds
Average Speed 1.94MB/s
Best Time 7 minutes, 17 seconds
Best Speed 28.93MB/s
Worst Time 3 hours, 29 minutes, 52 seconds
Worst Speed 1.00MB/s
Report