folder CelebV-HQ (3 files)
filecelebvhq_md5sum.txt 0.05kB
filecelebvhq_info.json 19.07MB
filecelebvhq.tar.gz 41.37GB
Type: Dataset
Tags: faces, video, celeb, CelebV, Video Generation

Bibtex:
@article{,
title= {CelebV-HQ},
journal= {},
author= {Hau Zhu and Wayne Wu and Wentao Zhu and Liming Jiang and Siwei Tang and Li Zhang and Ziwei Liu and Chen Change Loy},
year= {},
url= {https://github.com/CelebV-HQ/CelebV-HQ/tree/main},
abstract= {Large-scale datasets have played indispensable roles in the recent success of face generation/editing and significantly facilitated the advances of emerging research fields. However, the academic community still lacks a video dataset with diverse facial attribute annotations, which is crucial for the research on face-related videos. In this work, we propose a large-scale, high-quality, and diverse video dataset with rich facial attribute annotations, named the High-Quality Celebrity Video Dataset (CelebV-HQ). CelebV-HQ contains 35,666 video clips with the resolution of 512x512 at least, involving 15,653 identities. All clips are labeled manually with 83 facial attributes, covering appearance, action, and emotion. We conduct a comprehensive analysis in terms of age, ethnicity, brightness stability, motion smoothness, head pose diversity, and data quality to demonstrate the diversity and temporal coherence of CelebV-HQ. Besides, its versatility and potential are validated on two representative tasks, i.e., unconditional video generation and video facial attribute editing. Furthermore, we envision the future potential of CelebV-HQ, as well as the new opportunities and challenges it would bring to related research directions.},
keywords= {Video, Faces, Celeb, CelebV, Video Generation},
terms= {},
license= {},
superseded= {}
}

Hosted by users:

Send Feedback