flyingthings3d__frames_cleanpass_webp.tar
Nikolaus Mayer and Eddy Ilg and Philip Hausser and Philipp Fischer and Daniel Cremers and Alexey Dosovitskiy and Thomas Brox

flyingthings3d__frames_cleanpass_webp.tar7.84GB
Type: Dataset
Tags: Dataset, optical flow, synthetic, disparity, scene flow

Bibtex:
@article{,
title= {flyingthings3d__frames_cleanpass_webp.tar},
keywords= {disparity,scene flow,optical flow,dataset,synthetic},
journal= {},
author= {Nikolaus Mayer and Eddy Ilg and Philip Hausser and Philipp Fischer and Daniel Cremers and Alexey Dosovitskiy and Thomas Brox},
year= {},
url= {https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html},
license= {},
abstract= {This torrent contains the "Clean pass" images (WebP format) for the "FlyingThings3D" dataset from the CVPR 2016 paper "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation" by Mayer et al. (https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html).},
superseded= {},
terms= {https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html#tou}
}

10 day statistics (1 downloads taking more than 30 seconds)

Average Time 2 hours, 18 minutes, 15 seconds
Average Speed 945.05kB/s
Best Time 2 hours, 18 minutes, 15 seconds
Best Speed 945.05kB/s
Worst Time 2 hours, 18 minutes, 15 seconds
Worst Speed 945.05kB/s
Report