Info hash | 0db676a6aaff8c33f9749d5f9c0fa22bf336bc76 |
Last mirror activity | 5:03 ago |
Size | 9.07GB (9,066,763,048 bytes) |
Added | 2018-11-09 11:36:05 |
Views | 1546 |
Hits | 10950 |
ID | 4034 |
Type | multi |
Downloaded | 11184 time(s) |
Uploaded by | |
Folder | Machine Learning Pedro Domingos |
Num files | 113 files [See full list] |
Mirrors | 12 complete, 0 downloading = 12 mirror(s) total [Log in to see full list] |

![]() | 211.61MB |
![]() | 101.45MB |
![]() | 58.65MB |
![]() | 112.26MB |
![]() | 38.37MB |
![]() | 60.36MB |
![]() | 100.81MB |
![]() | 43.66MB |
![]() | 117.03MB |
![]() | 55.88MB |
![]() | 64.92MB |
![]() | 74.46MB |
![]() | 65.62MB |
![]() | 50.21MB |
![]() | 119.43MB |
![]() | 147.60MB |
![]() | 123.30MB |
![]() | 129.98MB |
![]() | 103.62MB |
![]() | 57.97MB |
![]() | 9.74MB |
![]() | 78.90MB |
![]() | 76.51MB |
![]() | 102.72MB |
![]() | 39.77MB |
![]() | 114.03MB |
![]() | 50.19MB |
![]() | 32.52MB |
![]() | 32.38MB |
![]() | 88.23MB |
![]() | 31.72MB |
![]() | 92.37MB |
![]() | 48.29MB |
![]() | 89.69MB |
![]() | 14.35MB |
![]() | 88.03MB |
![]() | 88.90MB |
![]() | 61.90MB |
![]() | 40.82MB |
![]() | 45.50MB |
![]() | 15.47MB |
![]() | 51.31MB |
![]() | 37.98MB |
![]() | 71.28MB |
![]() | 126.74MB |
![]() | 100.47MB |
![]() | 75.85MB |
![]() | 33.78MB |
![]() | 56.58MB |
Type: Course
Tags: Pedro Domingos, Machine Learning Course, University of Washington
Bibtex:
Tags: Pedro Domingos, Machine Learning Course, University of Washington
Bibtex:
@article{, title= {University of Washington - Pedro Domingos - Machine Learning}, keywords= {Pedro Domingos, Machine Learning Course, University of Washington}, journal= {}, author= {Pedro Domingos}, year= {}, url= {https://www.youtube.com/user/UWCSE/playlists?sort=dd&view=50&shelf_id=16}, license= {}, abstract= {Video Lecture of Course Data Mining & Machine Learning by Prof Pedro Domingos, University of Washington USA.}, superseded= {}, terms= {} }