No Answer Needed: Predicting LLM Answer Accuracy from Question-Only Linear Probes
Iván Vicente Moreno Cencerrado and Arnau Padrés Masdemont and Anton Gonzalvez Hawthorne and David Demitri Africa and Lorenzo Pacchiardi

folder . (58 files)
fileno-answer-needed.tar.part-057 3.40GB
fileno-answer-needed.tar.part-056 10.74GB
fileno-answer-needed.tar.part-055 10.74GB
fileno-answer-needed.tar.part-053 10.74GB
fileno-answer-needed.tar.part-054 10.74GB
fileno-answer-needed.tar.part-052 10.74GB
fileno-answer-needed.tar.part-050 10.74GB
fileno-answer-needed.tar.part-051 10.74GB
fileno-answer-needed.tar.part-049 10.74GB
fileno-answer-needed.tar.part-048 10.74GB
fileno-answer-needed.tar.part-046 10.74GB
fileno-answer-needed.tar.part-047 10.74GB
fileno-answer-needed.tar.part-045 10.74GB
fileno-answer-needed.tar.part-043 10.74GB
fileno-answer-needed.tar.part-044 10.74GB
fileno-answer-needed.tar.part-042 10.74GB
fileno-answer-needed.tar.part-040 10.74GB
fileno-answer-needed.tar.part-041 10.74GB
fileno-answer-needed.tar.part-038 10.74GB
fileno-answer-needed.tar.part-039 10.74GB
fileno-answer-needed.tar.part-037 10.74GB
fileno-answer-needed.tar.part-035 10.74GB
fileno-answer-needed.tar.part-036 10.74GB
fileno-answer-needed.tar.part-034 10.74GB
fileno-answer-needed.tar.part-032 10.74GB
fileno-answer-needed.tar.part-033 10.74GB
fileno-answer-needed.tar.part-031 10.74GB
fileno-answer-needed.tar.part-030 10.74GB
fileno-answer-needed.tar.part-029 10.74GB
fileno-answer-needed.tar.part-027 10.74GB
fileno-answer-needed.tar.part-028 10.74GB
fileno-answer-needed.tar.part-026 10.74GB
fileno-answer-needed.tar.part-024 10.74GB
fileno-answer-needed.tar.part-025 10.74GB
fileno-answer-needed.tar.part-023 10.74GB
fileno-answer-needed.tar.part-021 10.74GB
fileno-answer-needed.tar.part-022 10.74GB
fileno-answer-needed.tar.part-020 10.74GB
fileno-answer-needed.tar.part-018 10.74GB
fileno-answer-needed.tar.part-019 10.74GB
fileno-answer-needed.tar.part-017 10.74GB
fileno-answer-needed.tar.part-015 10.74GB
fileno-answer-needed.tar.part-016 10.74GB
fileno-answer-needed.tar.part-014 10.74GB
fileno-answer-needed.tar.part-012 10.74GB
fileno-answer-needed.tar.part-013 10.74GB
fileno-answer-needed.tar.part-011 10.74GB
fileno-answer-needed.tar.part-009 10.74GB
fileno-answer-needed.tar.part-010 10.74GB
Too many files! Click here to view them all.
Type: Dataset
Tags:

Bibtex:
@article{,
title= {No Answer Needed: Predicting LLM Answer Accuracy from Question-Only Linear Probes},
journal= {},
author= {Iván Vicente Moreno Cencerrado and Arnau Padrés Masdemont and Anton Gonzalvez Hawthorne and David Demitri Africa and Lorenzo Pacchiardi},
year= {},
url= {https://arxiv.org/abs/2509.10625},
abstract= {Do large language models (LLMs) anticipate when they will answer correctly? To study this, we extract activations after a question is read but before any tokens are generated, and train linear probes to predict whether the model's forthcoming answer will be correct. Across three open-source model families ranging from 7 to 70 billion parameters, projections on this "in-advance correctness direction" trained on generic trivia questions predict success in distribution and on diverse out-of-distribution knowledge datasets, outperforming black-box baselines and verbalised predicted confidence. Predictive power saturates in intermediate layers, suggesting that self-assessment emerges mid-computation. Notably, generalisation falters on questions requiring mathematical reasoning. Moreover, for models responding "I don't know", doing so strongly correlates with the probe score, indicating that the same direction also captures confidence. By complementing previous results on truthfulness and other behaviours obtained with probes and sparse auto-encoders, our work contributes essential findings to elucidate LLM internals.},
keywords= {},
terms= {},
license= {},
superseded= {}
}


Send Feedback