FishTrack23: An Ensemble Underwater Dataset for Multi-Object Tracking
Matthew Dawkins and Jack Prior and Bryon Lewis and Robin Faillettaz and Thompson Banez and Mary Salvi and Audrey Rollo and Julien Simon and Alexa Abanga and Matthew Campbell and Matthew Lucero and Aashish Chaudhary and Benjamin Richards and Anthony Hoogs

folder FishTrack23 (44100 files)
filelicense.txt 18.66kB
filereadme.txt 2.86kB
fileSample/CDFW-2021-July-Tules1.csv 4.01kB
fileSample/CDFW-2021-July-Tules1.mp4 58.36MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000001.png 1.24MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000002.png 1.76MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000003.png 1.33MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000004.png 1.81MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000005.png 1.74MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000006.png 1.40MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000007.png 1.86MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000008.png 1.71MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000009.png 1.33MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000010.png 1.82MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000011.png 1.74MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000012.png 1.36MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000013.png 1.85MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000014.png 1.71MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000015.png 1.32MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000016.png 1.83MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000017.png 1.77MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000018.png 1.30MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000019.png 1.81MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000020.png 1.74MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000021.png 1.26MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000022.png 1.84MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000023.png 1.68MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000024.png 1.23MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000025.png 1.83MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000026.png 1.65MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000027.png 1.12MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000028.png 1.80MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000029.png 1.69MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000030.png 1.25MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000031.png 1.83MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000032.png 1.65MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000033.png 1.20MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000034.png 1.82MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000035.png 1.67MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000036.png 1.25MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000037.png 1.84MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000038.png 1.65MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000039.png 1.15MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000040.png 1.80MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000041.png 1.69MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000042.png 1.21MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000043.png 1.82MB
fileSample/IFREMER-DROPCAM-2017-Bait1/frame000044.png 1.70MB
fileSample/IFREMER-DROPCAM-2017-Bait1/groundtruth.csv 3.23kB
Too many files! Click here to view them all.
Type: Dataset
Tags: NOAA, deep learning, Computer Vision, object detection, object classification, marine biology, IFREMER, Fish, Object Tracking, CDFW

Bibtex:
@inproceedings{dawkins2024fishtrack23,
title= {FishTrack23: An Ensemble Underwater Dataset for Multi-Object Tracking},
journal= {},
author= {Matthew Dawkins and Jack Prior and Bryon Lewis and Robin Faillettaz and Thompson Banez and Mary Salvi and Audrey Rollo and Julien Simon and Alexa Abanga and Matthew Campbell and Matthew Lucero and Aashish Chaudhary and Benjamin Richards and Anthony Hoogs},
booktitle= {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages= {7167--7176},
year= {2024},
url= {https://openaccess.thecvf.com/content/WACV2024/papers/Dawkins_FishTrack23_An_Ensemble_Underwater_Dataset_for_Multi-Object_Tracking_WACV_2024_paper.pdf},
abstract= {Tracking fish in optical underwater imagery contains a number of challenges not encountered in terrestrial domains. Video may contain large schools comprised of many individuals, dynamic natural backgrounds, variable target scales, volatile collection conditions, and non-fish moving confusors including debris, marine snow, and other organisms. Lastly, there is a lack of large public datasets for algorithm evaluation available in this domain. FishTrack aims to address these challenges by providing a large quantity of expert-annotated fish groundtruth tracks, in imagery and video collected across a range of different backgrounds, locations, collection conditions, and organizations.},
keywords= {NOAA, deep learning, Computer Vision, object detection, object classification, marine biology, IFREMER, Fish, Object Tracking, CDFW},
terms= {},
license= {CC-BY-4.0},
superseded= {}
}

Hosted by users:

Send Feedback