MC_GRID (131934 files)
README.md | 4.04kB |
grid_vp.pkl | 70.35MB |
lip_fea/test/s12/bbae1n.npy | 76.93kB |
lip_fea/test/s12/bbae2s.npy | 76.93kB |
lip_fea/test/s12/bbae3p.npy | 76.93kB |
lip_fea/test/s12/bbae4a.npy | 76.93kB |
lip_fea/test/s12/bbak5n.npy | 76.93kB |
lip_fea/test/s12/bbak6s.npy | 76.93kB |
lip_fea/test/s12/bbak7p.npy | 76.93kB |
lip_fea/test/s12/bbak8a.npy | 76.93kB |
lip_fea/test/s12/bbaq9n.npy | 76.93kB |
lip_fea/test/s12/bbar1p.npy | 76.93kB |
lip_fea/test/s12/bbar2a.npy | 76.93kB |
lip_fea/test/s12/bbarzs.npy | 76.93kB |
lip_fea/test/s12/bbay3n.npy | 76.93kB |
lip_fea/test/s12/bbay4s.npy | 76.93kB |
lip_fea/test/s12/bbay5p.npy | 76.93kB |
lip_fea/test/s12/bbay6a.npy | 76.93kB |
lip_fea/test/s12/bbbe5n.npy | 76.93kB |
lip_fea/test/s12/bbbe6s.npy | 76.93kB |
lip_fea/test/s12/bbbe7p.npy | 76.93kB |
lip_fea/test/s12/bbbe8a.npy | 76.93kB |
lip_fea/test/s12/bbbk9n.npy | 76.93kB |
lip_fea/test/s12/bbbl1p.npy | 76.93kB |
lip_fea/test/s12/bbbl2a.npy | 76.93kB |
lip_fea/test/s12/bbblzs.npy | 76.93kB |
lip_fea/test/s12/bbbr3n.npy | 76.93kB |
lip_fea/test/s12/bbbr4s.npy | 76.93kB |
lip_fea/test/s12/bbbr5p.npy | 76.93kB |
lip_fea/test/s12/bbbr6a.npy | 76.93kB |
lip_fea/test/s12/bbby7n.npy | 76.93kB |
lip_fea/test/s12/bbby8s.npy | 76.93kB |
lip_fea/test/s12/bbby9p.npy | 76.93kB |
lip_fea/test/s12/bbbzza.npy | 76.93kB |
lip_fea/test/s12/bbid7n.npy | 76.93kB |
lip_fea/test/s12/bbid8s.npy | 76.93kB |
lip_fea/test/s12/bbid9p.npy | 76.93kB |
lip_fea/test/s12/bbieza.npy | 76.93kB |
lip_fea/test/s12/bbik1n.npy | 76.93kB |
lip_fea/test/s12/bbik2s.npy | 76.93kB |
lip_fea/test/s12/bbik3p.npy | 76.93kB |
lip_fea/test/s12/bbik4a.npy | 76.93kB |
lip_fea/test/s12/bbiq5n.npy | 76.93kB |
lip_fea/test/s12/bbiq6s.npy | 76.93kB |
lip_fea/test/s12/bbiq7p.npy | 76.93kB |
lip_fea/test/s12/bbiq8a.npy | 76.93kB |
lip_fea/test/s12/bbix9n.npy | 76.93kB |
lip_fea/test/s12/bbiy1p.npy | 76.93kB |
lip_fea/test/s12/bbiy2a.npy | 76.93kB |
Type: Dataset
Tags: Speech Separation, Speaker Extraction
Bibtex:
Tags: Speech Separation, Speaker Extraction
Bibtex:
@article{, title= {MC_GRID}, journal= {}, author= {Qinghua Liu and Yating Huang and Yunzhe Hao and Jiaming Xu and Bo Xu}, year= {}, url= {}, abstract= {Here we release the dataset (Multi_Channel_Grid, abbreviated as MC_Grid) used in our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. MC_Grid, which is based on GRID dataset, includes multi-channel audio, extracted voiceprint and visual feature. And our code is available at https://github.com/aispeech-lab/LiMuSE. Feel free to contact us if you have any questions or suggestions.}, keywords= {Speech Separation, Speaker Extraction}, terms= {}, license= {}, superseded= {} }
No comments yet
Add a comment