Name | DL | Torrents | Total Size | Joe's Recommended Mirror List [edit] | 233 | 8.28TB | 2486 | 0 | Medical [edit] | 87 | 2.20TB | 945 | 0 | New Collection [edit] | 18 | 5.64TB | 168 | 0 |
Pancreas-CT (164 files)
TCIA_pancreas_labels-02-05-2017/label0081.nii.gz | 63.03kB |
TCIA_pancreas_labels-02-05-2017/label0082.nii.gz | 65.71kB |
TCIA_pancreas_labels-02-05-2017/label0079.nii.gz | 75.31kB |
TCIA_pancreas_labels-02-05-2017/label0080.nii.gz | 56.08kB |
TCIA_pancreas_labels-02-05-2017/label0078.nii.gz | 90.32kB |
TCIA_pancreas_labels-02-05-2017/label0076.nii.gz | 63.25kB |
TCIA_pancreas_labels-02-05-2017/label0077.nii.gz | 68.15kB |
TCIA_pancreas_labels-02-05-2017/label0074.nii.gz | 62.26kB |
TCIA_pancreas_labels-02-05-2017/label0075.nii.gz | 67.09kB |
TCIA_pancreas_labels-02-05-2017/label0072.nii.gz | 65.42kB |
TCIA_pancreas_labels-02-05-2017/label0073.nii.gz | 93.32kB |
TCIA_pancreas_labels-02-05-2017/label0070.nii.gz | 63.84kB |
TCIA_pancreas_labels-02-05-2017/label0071.nii.gz | 61.44kB |
TCIA_pancreas_labels-02-05-2017/label0068.nii.gz | 64.95kB |
TCIA_pancreas_labels-02-05-2017/label0069.nii.gz | 66.48kB |
TCIA_pancreas_labels-02-05-2017/label0066.nii.gz | 63.27kB |
TCIA_pancreas_labels-02-05-2017/label0067.nii.gz | 64.10kB |
TCIA_pancreas_labels-02-05-2017/label0064.nii.gz | 64.91kB |
TCIA_pancreas_labels-02-05-2017/label0065.nii.gz | 64.37kB |
TCIA_pancreas_labels-02-05-2017/label0062.nii.gz | 63.42kB |
TCIA_pancreas_labels-02-05-2017/label0063.nii.gz | 90.47kB |
TCIA_pancreas_labels-02-05-2017/label0060.nii.gz | 90.70kB |
TCIA_pancreas_labels-02-05-2017/label0061.nii.gz | 72.53kB |
TCIA_pancreas_labels-02-05-2017/label0058.nii.gz | 94.77kB |
TCIA_pancreas_labels-02-05-2017/label0059.nii.gz | 59.53kB |
TCIA_pancreas_labels-02-05-2017/label0056.nii.gz | 64.68kB |
TCIA_pancreas_labels-02-05-2017/label0057.nii.gz | 69.20kB |
TCIA_pancreas_labels-02-05-2017/label0054.nii.gz | 66.13kB |
TCIA_pancreas_labels-02-05-2017/label0055.nii.gz | 63.24kB |
TCIA_pancreas_labels-02-05-2017/label0052.nii.gz | 66.64kB |
TCIA_pancreas_labels-02-05-2017/label0053.nii.gz | 90.80kB |
TCIA_pancreas_labels-02-05-2017/label0050.nii.gz | 88.85kB |
TCIA_pancreas_labels-02-05-2017/label0051.nii.gz | 61.77kB |
TCIA_pancreas_labels-02-05-2017/label0049.nii.gz | 67.61kB |
TCIA_pancreas_labels-02-05-2017/label0047.nii.gz | 59.72kB |
TCIA_pancreas_labels-02-05-2017/label0048.nii.gz | 61.84kB |
TCIA_pancreas_labels-02-05-2017/label0046.nii.gz | 61.53kB |
TCIA_pancreas_labels-02-05-2017/label0044.nii.gz | 141.52kB |
TCIA_pancreas_labels-02-05-2017/label0045.nii.gz | 64.38kB |
TCIA_pancreas_labels-02-05-2017/label0043.nii.gz | 64.13kB |
TCIA_pancreas_labels-02-05-2017/label0041.nii.gz | 70.88kB |
TCIA_pancreas_labels-02-05-2017/label0042.nii.gz | 90.02kB |
TCIA_pancreas_labels-02-05-2017/label0040.nii.gz | 74.55kB |
TCIA_pancreas_labels-02-05-2017/label0038.nii.gz | 64.25kB |
TCIA_pancreas_labels-02-05-2017/label0039.nii.gz | 60.76kB |
TCIA_pancreas_labels-02-05-2017/label0037.nii.gz | 62.14kB |
TCIA_pancreas_labels-02-05-2017/label0035.nii.gz | 67.93kB |
TCIA_pancreas_labels-02-05-2017/label0036.nii.gz | 68.26kB |
TCIA_pancreas_labels-02-05-2017/label0034.nii.gz | 64.43kB |
Type: Dataset
Tags:
Bibtex:
Tags:
Bibtex:
@article{, title= {NIH Pancreas-CT Dataset}, keywords= {}, journal= {}, author= {Holger R. Roth and Amal Farag and Evrim B. Turkbey and Le Lu and Jiamin Liu and Ronald M. Summers. }, year= {}, url= {http://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU}, license= {Creative Commons Attribution 3.0 Unported License}, abstract= {### Summary The National Institutes of Health Clinical Center performed 82 abdominal contrast enhanced 3D CT scans (~70 seconds after intravenous contrast injection in portal-venous) from 53 male and 27 female subjects. Seventeen of the subjects are healthy kidney donors scanned prior to nephrectomy. The remaining 65 patients were selected by a radiologist from patients who neither had major abdominal pathologies nor pancreatic cancer lesions. Subjects' ages range from 18 to 76 years with a mean age of 46.8 ± 16.7. The CT scans have resolutions of 512x512 pixels with varying pixel sizes and slice thickness between 1.5 − 2.5 mm, acquired on Philips and Siemens MDCT scanners (120 kVp tube voltage). A medical student manually performed slice-by-slice segmentations of the pancreas as ground-truth and these were verified/modified by an experienced radiologist. The images were processed into nii files using the following script: ``` for i in `ls . | grep PAN`; do echo $i; dcm2niix -vox 1 -z y -o ./data/ -m y -s y -f %n $i done ``` ### Citation Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB, Summers RM. DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation. N. Navab et al. (Eds.): MICCAI 2015, Part I, LNCS 9349, pp. 556–564, 2015. ### Examples ![](https://i.imgur.com/4aZNgw6.gifv) ![](https://i.imgur.com/kfhhH7x.png) ![](https://i.imgur.com/kGbz9hl.png) }, superseded= {}, terms= {} }