RSNA Pneumonia Detection Challenge (JPG files)

kaggle-pneumonia-jpg (29686 files)
stage_2_train_images_jpg/0a8d486f-1aa6-4fcf-b7be-4bf04fc8628b.jpg 112.93kB
stage_2_train_images_jpg/0a8ccb49-debc-4e9a-b5dc-eefc3fe909ca.jpg 122.85kB
stage_2_train_images_jpg/0a8b9570-2684-48e1-b016-e14a6a79cd3e.jpg 141.55kB
stage_2_train_images_jpg/0a7b13a9-bcfe-4a99-b699-4c8cf6882f04.jpg 118.93kB
stage_2_train_images_jpg/0a6a5956-58cf-4f17-9e39-7e0d17310f67.jpg 149.30kB
stage_2_train_images_jpg/0a7b0cc8-af04-4d2c-9267-6fdfb05f48f2.jpg 98.81kB
stage_2_train_images_jpg/0a5c4dcb-33ac-4466-9dbf-42ed5c8ec1f0.jpg 146.67kB
stage_2_train_images_jpg/0a5b4860-e6ab-4737-a389-9d0cf7300770.jpg 112.49kB
stage_2_train_images_jpg/0a5a6574-d94d-441f-afe4-115ba66b322e.jpg 151.61kB
stage_2_train_images_jpg/0a4b4307-d370-416e-afe5-7c9aeb1d6953.jpg 129.73kB
stage_2_train_images_jpg/0a4d9634-7ee8-4512-ba83-6ff5e352b2c2.jpg 162.38kB
stage_2_train_images_jpg/0a2f6cf6-1f45-44c8-bcf0-98a3b466b597.jpg 112.72kB
stage_2_train_images_jpg/0a2c130c-c536-4651-836d-95d07e9a89cf.jpg 146.22kB
stage_2_train_images_jpg/0a09d6e7-5e7c-4100-a690-ad3690fedd3b.jpg 89.56kB
stage_2_train_images_jpg/0a03a65b-9e45-4e3d-ae6c-b8a37112ab31.jpg 137.30kB
stage_2_train_images_jpg/0a03fbf6-3c9a-4e2e-89ce-c7629ae43a27.jpg 161.80kB
stage_2_train_images_jpg/0a0f6755-610d-4b7c-a460-5f5a8f5c0743.jpg 97.34kB
stage_2_train_images_jpg/0a0f91dc-6015-4342-b809-d19610854a21.jpg 124.53kB
stage_2_test_images_jpg/c1937034-f8a4-4a84-a69c-213911b39907.jpg 109.25kB
stage_2_test_images_jpg/c1507764-540b-4036-ae74-8271effd56c5.jpg 148.98kB
stage_2_test_images_jpg/c1863155-7189-4ff6-864b-6c661f7d625f.jpg 161.69kB
stage_2_test_images_jpg/c1442587-d214-456b-8a4d-59431600cabf.jpg 121.80kB
stage_2_test_images_jpg/c1422130-230c-4c57-947b-f441fe987edb.jpg 122.53kB
stage_2_test_images_jpg/c1330177-9ef2-410c-a3ee-f7c1cabeddd1.jpg 130.91kB
stage_2_test_images_jpg/c127745e-7555-4a19-8ed9-33aa32622c4a.jpg 143.55kB
stage_2_test_images_jpg/c127904f-d321-4d79-b02d-599b73b0a734.jpg 136.14kB
stage_2_test_images_jpg/c104712e-81a4-4a39-9d0d-0ca3ec487e93.jpg 150.58kB
stage_2_test_images_jpg/c15132d6-6486-407e-b07a-2077eae209ce.jpg 154.43kB
stage_2_test_images_jpg/c13837b3-8a12-4cb3-98fd-4ff007df6aba.jpg 165.19kB
stage_2_test_images_jpg/c12861f2-2d63-43f1-b615-cc6e82116faf.jpg 148.44kB
stage_2_test_images_jpg/c13125e5-a27b-4110-bac3-7ed3ee2bfbb1.jpg 91.76kB
stage_2_test_images_jpg/c1868de8-4f38-4bcb-8c58-d647cfbe1bc6.jpg 149.82kB
stage_2_test_images_jpg/c1636efa-40ac-4c63-bc9b-6886165ef44d.jpg 156.75kB
stage_2_test_images_jpg/c1526e12-28a6-429b-98e7-8c6d634a9818.jpg 121.87kB
stage_2_test_images_jpg/c1281ecd-6406-420a-960a-f60c0a2be14e.jpg 160.98kB
stage_2_test_images_jpg/c1492be6-e6aa-404c-8f37-0468aa65f5ea.jpg 103.34kB
stage_2_test_images_jpg/c1212b24-683b-4b34-9470-a3ec54564e88.jpg 166.39kB
stage_2_test_images_jpg/c189e228-37c8-4def-b35b-1938a92f4f68.jpg 158.21kB
stage_2_test_images_jpg/c179ad70-56f9-4739-8a29-17c71be7f2cb.jpg 85.54kB
stage_2_test_images_jpg/c187de8d-dff1-4f5f-b11e-74bd5bf8cfb8.jpg 120.50kB
stage_2_test_images_jpg/c172bbde-f7f7-4e65-aeb9-98684feddbbd.jpg 135.96kB
stage_2_test_images_jpg/c141f676-7ac5-4231-bdb2-aea92772eb7f.jpg 149.69kB
stage_2_test_images_jpg/c171dad5-e08b-4590-a946-9ab43a257b8c.jpg 144.03kB
stage_2_test_images_jpg/c130ee0e-7bf6-4c8e-afa2-8b27e23f4c5d.jpg 173.09kB
stage_2_test_images_jpg/c129ed85-8cdc-4505-972e-661a36fd9234.jpg 137.92kB
stage_2_test_images_jpg/c107a573-4b0f-4b31-9ad5-f33279364ff3.jpg 68.91kB
stage_2_test_images_jpg/c121b434-a3cf-415b-9229-0ec10a66d6be.jpg 146.43kB
stage_2_test_images_jpg/c19eb270-ac17-48f3-bc22-9ba6fd38ac52.jpg 161.33kB
stage_2_test_images_jpg/c103f115-266b-4f0c-97d0-082dc2438a27.jpg 139.49kB
Too many files! Click here to view them all.
Type: Dataset
Tags:

Bibtex:
@article{,
title= {RSNA Pneumonia Detection Challenge (JPG files)},
keywords= {},
author= {},
abstract= {Details from the challenge:

## What am I predicting?

In this challenge competitors are predicting whether pneumonia exists in a given image. They do so by predicting bounding boxes around areas of the lung. Samples without bounding boxes are negative and contain no definitive evidence of pneumonia. Samples with bounding boxes indicate evidence of pneumonia.

When making predictions, competitors should predict as many bounding boxes as they feel are necessary, in the format: confidence x-min y-min width height

There should be only ONE predicted row per image. This row may include multiple bounding boxes.

A properly formatted row may look like any of the following.

For patientIds with no predicted pneumonia / bounding boxes: 0004cfab-14fd-4e49-80ba-63a80b6bddd6,

For patientIds with a single predicted bounding box: 0004cfab-14fd-4e49-80ba-63a80b6bddd6,0.5 0 0 100 100

For patientIds with multiple predicted bounding boxes: 0004cfab-14fd-4e49-80ba-63a80b6bddd6,0.5 0 0 100 100 0.5 0 0 100 100, etc.

## File descriptions
```
stage_2_train.csv - the training set. Contains patientIds and bounding box / target information.
stage_2_detailed_class_info.csv - provides detailed information about the type of positive or negative class for each image.
```
## Data fields
```
patientId _- A patientId. Each patientId corresponds to a unique image.
x_ - the upper-left x coordinate of the bounding box.
y_ - the upper-left y coordinate of the bounding box.
width_ - the width of the bounding box.
height_ - the height of the bounding box.
Target_ - the binary Target, indicating whether this sample has evidence of pneumonia.
```},
terms= {},
license= {},
superseded= {},
url= {https://www.kaggle.com/c/rsna-pneumonia-detection-challenge}
}

Hosted by users:

Send Feedback