RSNA Pneumonia Detection Challenge (DICOM files)

kaggle-pneumonia (29686 files)
stage_2_train_labels.csv 1.49MB
stage_2_train_images/fffec09e-8a4a-48b1-b33e-ab4890ccd136.dcm 170.13kB
stage_2_train_images/fffc95b5-605b-4226-80ab-62caec682b22.dcm 136.93kB
stage_2_train_images/fffcff11-d018-4414-971a-a7cefa327795.dcm 154.32kB
stage_2_train_images/fffb2395-8edd-4954-8a89-ffe2fd329be3.dcm 116.09kB
stage_2_train_images/fffba05a-1635-4545-9bbd-57ad4cfe8d27.dcm 157.44kB
stage_2_train_images/fff50447-821b-4b72-ae91-22b0679d6d3e.dcm 161.46kB
stage_2_train_images/fff1cc9c-3895-43be-84e1-a7aaef21002b.dcm 123.50kB
stage_2_train_images/fff7447f-99ce-4102-87f3-9788b2459eb4.dcm 118.10kB
stage_2_train_images/ffee0360-20cf-4d4a-9af5-e5c9b493c73b.dcm 110.26kB
stage_2_train_images/fff0b503-72a5-446a-843d-f3d152e39053.dcm 111.74kB
stage_2_train_images/ffeab8ae-f339-40d6-96f1-f1f8c97d2cb1.dcm 128.44kB
stage_2_train_images/ffe4707d-517c-4ed0-8a9f-3ad149748991.dcm 153.39kB
stage_2_train_images/ffe16061-b19f-4333-8a03-b41aab42b47d.dcm 145.13kB
stage_2_train_images/ffe9a1c4-634d-408f-9b0f-8098ffb78a4e.dcm 136.52kB
stage_2_train_images/ffe9ab5c-9d39-4235-9ade-d725dcad6b76.dcm 148.50kB
stage_2_train_images/ffde3879-241c-4b03-9d91-625cae6b49e8.dcm 104.63kB
stage_2_train_images/ffdc957e-6239-427d-8a54-fdf8ced3a356.dcm 105.49kB
stage_2_train_images/ffde3e7e-849c-4077-bfd0-4e4498ee8817.dcm 153.33kB
stage_2_train_images/ffdc8a6a-f513-4a04-9c1d-24840a779220.dcm 162.99kB
stage_2_train_images/ffdc771e-1f1a-47f7-b732-3e06e48c24e8.dcm 92.76kB
stage_2_train_images/ffd56560-6754-4a20-83c6-06ad5c4b30ab.dcm 154.28kB
stage_2_train_images/ffd670a5-b6dc-4f54-928a-69b7a04662eb.dcm 125.26kB
stage_2_train_images/ffd787b6-59ca-48cb-bd15-bcedd52cf37c.dcm 112.39kB
stage_2_train_images/ffd0c212-bfb6-41e3-b17b-b927b99d1730.dcm 162.97kB
stage_2_train_images/ffd2bc74-f9d6-49fb-84d7-de060ee22583.dcm 122.66kB
stage_2_train_images/ffcfe8c1-5641-4dc3-910c-573e3227f536.dcm 136.39kB
stage_2_train_images/ffc9e552-ca53-43a8-a156-b0f97f0d40f3.dcm 100.96kB
stage_2_train_images/ffcc35e8-6fe8-42df-9605-9fedf57240d1.dcm 151.45kB
stage_2_train_images/ffc01e64-ba14-4620-8016-235fc1609767.dcm 138.44kB
stage_2_train_images/ffc3fc59-f046-48b8-b7ad-3a9e07362d0c.dcm 129.87kB
stage_2_train_images/ffba6230-71cf-4287-a0d1-887f5d16e95d.dcm 133.55kB
stage_2_train_images/ffb9f122-b2f4-4531-8297-416fc0e47cda.dcm 159.19kB
stage_2_train_images/ffb8998b-f262-4330-820d-bf48a4d8fec1.dcm 159.40kB
stage_2_train_images/ffb0a415-cd40-4c33-b806-cf533505f89e.dcm 139.63kB
stage_2_train_images/ffb0166b-771d-4463-8e38-20b67fa2d3b2.dcm 166.05kB
stage_2_train_images/ffae40ab-fcfe-4311-a74a-89f605dba48b.dcm 103.26kB
stage_2_train_images/ffad4160-d78e-4bcc-ab1f-47e20e613bd6.dcm 149.13kB
stage_2_train_images/ffaddbba-6aa4-4f12-ab24-b994567f01e6.dcm 155.98kB
stage_2_train_images/ffa424d2-6e6b-4eed-93ab-7551e8941215.dcm 104.80kB
stage_2_train_images/ffabea71-fba0-49ff-a038-2b1dac9971b7.dcm 142.80kB
stage_2_train_images/ffa141d4-00d8-4df5-86e0-b6f37dd8f3b1.dcm 166.76kB
stage_2_train_images/ffa31ac1-56ef-4f72-98e9-0128274b751f.dcm 91.67kB
stage_2_train_images/ffa54bb3-2fb6-4010-abbb-3f43a2b3d0ce.dcm 157.11kB
stage_2_train_images/ff939423-ded7-4887-907b-af5e68aa9aef.dcm 157.00kB
stage_2_train_images/ffa3e9f1-6af8-481f-8523-b476e67edf69.dcm 142.13kB
stage_2_train_images/ff781779-1ab8-43a8-914c-070cbbd97967.dcm 106.99kB
stage_2_train_images/ff615475-a82f-4fa0-8fa2-6fb1a32c9dc8.dcm 115.24kB
stage_2_train_images/ff728586-b8a3-4d0f-8956-4b93dfc3b728.dcm 122.92kB
Too many files! Click here to view them all.
Type: Dataset
Tags:

Bibtex:
@article{,
title= {RSNA Pneumonia Detection Challenge (DICOM files)},
keywords= {},
author= {},
abstract= {Details from the challenge:

## What am I predicting?

In this challenge competitors are predicting whether pneumonia exists in a given image. They do so by predicting bounding boxes around areas of the lung. Samples without bounding boxes are negative and contain no definitive evidence of pneumonia. Samples with bounding boxes indicate evidence of pneumonia.

When making predictions, competitors should predict as many bounding boxes as they feel are necessary, in the format: confidence x-min y-min width height

There should be only ONE predicted row per image. This row may include multiple bounding boxes.

A properly formatted row may look like any of the following.

For patientIds with no predicted pneumonia / bounding boxes: 0004cfab-14fd-4e49-80ba-63a80b6bddd6,

For patientIds with a single predicted bounding box: 0004cfab-14fd-4e49-80ba-63a80b6bddd6,0.5 0 0 100 100

For patientIds with multiple predicted bounding boxes: 0004cfab-14fd-4e49-80ba-63a80b6bddd6,0.5 0 0 100 100 0.5 0 0 100 100, etc.

## File descriptions
```
stage_2_train.csv - the training set. Contains patientIds and bounding box / target information.
stage_2_detailed_class_info.csv - provides detailed information about the type of positive or negative class for each image.
```
## Data fields
```
patientId _- A patientId. Each patientId corresponds to a unique image.
x_ - the upper-left x coordinate of the bounding box.
y_ - the upper-left y coordinate of the bounding box.
width_ - the width of the bounding box.
height_ - the height of the bounding box.
Target_ - the binary Target, indicating whether this sample has evidence of pneumonia.
```},
terms= {},
license= {},
superseded= {},
url= {https://www.kaggle.com/c/rsna-pneumonia-detection-challenge}
}

Hosted by users:

Send Feedback