driving__frames_cleanpass_webp.tar
Nikolaus Mayer and Eddy Ilg and Philip Hausser and Philipp Fischer and Daniel Cremers and Alexey Dosovitskiy and Thomas Brox

driving__frames_cleanpass_webp.tar1.55GB
Type: Dataset
Tags: Dataset, disparity, scene flow, synthetic

Bibtex:
@article{,
title= {driving__frames_cleanpass_webp.tar},
keywords= {Dataset, synthetic, disparity, scene flow},
journal= {},
author= {Nikolaus Mayer and Eddy Ilg and Philip Hausser and Philipp Fischer and Daniel Cremers and Alexey Dosovitskiy and Thomas Brox},
year= {},
url= {https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html},
license= {},
abstract= {This torrent contains the "Clean pass" images (WebP format) for the "Driving" dataset from the CVPR 2016 paper "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation" by Mayer et al. (https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html).},
superseded= {},
terms= {https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html#tou}
}

10 day statistics (5 downloads)

Average Time 1 hrs, 37 mins, 26 secs
Average Speed 264.77kB/s
Best Time 5 mins, 07 secs
Best Speed 5.04MB/s
Worst Time 6 hrs, 11 mins, 33 secs
Worst Speed 69.44kB/s
Report