CAMELYON16 (964 files)
README.md |
3.64kB |
masks/tumor_111_mask.tif |
30.27MB |
masks/tumor_109_mask.tif |
32.87MB |
masks/tumor_110_mask.tif |
8.39MB |
masks/tumor_108_mask.tif |
37.10MB |
masks/tumor_106_mask.tif |
40.04MB |
masks/tumor_107_mask.tif |
21.16MB |
masks/tumor_105_mask.tif |
28.25MB |
masks/tumor_103_mask.tif |
30.23MB |
masks/tumor_104_mask.tif |
37.10MB |
masks/tumor_101_mask.tif |
22.75MB |
masks/tumor_102_mask.tif |
56.77MB |
masks/tumor_099_mask.tif |
25.89MB |
masks/tumor_100_mask.tif |
34.17MB |
masks/tumor_097_mask.tif |
32.13MB |
masks/tumor_098_mask.tif |
18.16MB |
masks/tumor_095_mask.tif |
8.33MB |
masks/tumor_096_mask.tif |
22.84MB |
masks/tumor_093_mask.tif |
22.90MB |
masks/tumor_094_mask.tif |
29.14MB |
masks/tumor_091_mask.tif |
8.36MB |
masks/tumor_092_mask.tif |
2.13MB |
masks/tumor_089_mask.tif |
54.88MB |
masks/tumor_090_mask.tif |
45.05MB |
masks/tumor_088_mask.tif |
28.62MB |
masks/tumor_086_mask.tif |
45.86MB |
masks/tumor_087_mask.tif |
22.59MB |
masks/tumor_085_mask.tif |
4.90MB |
masks/tumor_083_mask.tif |
43.18MB |
masks/tumor_084_mask.tif |
13.33MB |
masks/tumor_082_mask.tif |
17.29MB |
masks/tumor_080_mask.tif |
38.70MB |
masks/tumor_081_mask.tif |
21.12MB |
masks/tumor_079_mask.tif |
1.86MB |
masks/tumor_077_mask.tif |
30.05MB |
masks/tumor_078_mask.tif |
32.43MB |
masks/tumor_076_mask.tif |
33.42MB |
masks/tumor_074_mask.tif |
31.60MB |
masks/tumor_075_mask.tif |
22.59MB |
masks/tumor_072_mask.tif |
37.85MB |
masks/tumor_073_mask.tif |
34.31MB |
masks/tumor_070_mask.tif |
22.87MB |
masks/tumor_071_mask.tif |
31.13MB |
masks/tumor_068_mask.tif |
27.67MB |
masks/tumor_069_mask.tif |
18.63MB |
masks/tumor_066_mask.tif |
38.33MB |
masks/tumor_067_mask.tif |
1.79MB |
masks/tumor_064_mask.tif |
20.38MB |
masks/tumor_065_mask.tif |
15.13MB |
|
|
|
Type: Dataset
Bibtex:
Tags:
Bibtex:
@article{,
title= {CAMELYON16 dataset},
journal= {},
author= {Peter Bandi},
year= {},
url= {https://camelyon16.grand-challenge.org/data},
abstract= {CAMELYON16 challenge dataset. The goal of CAMELYON16 challenge is to evaluate new and existing algorithms for automated detection of metastases in hematoxylin and eosin (H&E) stained whole-slide images (WSIs) of lymph node sections. The dataset contains 270 WSIs (159 normal slides, and 111 slides with tumor) for training, and 129 WSIs for testing. The dataset is a slightly updated version of the one available on GigaScience at https://doi.org/10.1093/gigascience/giy065. The changes are: 1. The test_114.tiff WSI was exhaustively annotated. 2. Generated mask files were added for each WSI with value 1 for normal tissue, and 2 for tumor areas in the corresponding WSI.},
keywords= {whole-slide image, pathology, histology},
terms= {},
license= {https://creativecommons.org/publicdomain/zero/1.0},
superseded= {}
}
README.md