ZeroToMastery - PyTorch for Deep Learning

folder [FreeCoursesOnline.Me] ZeroToMastery - PyTorch for Deep Learning (329 files)
file0. Websites you may like/1. Get Free Premium Accounts Daily On Our Discord Server!.txt 1.35kB
file0. Websites you may like/2. Premium Cracked Accounts-Tutorials-Guides-Articles Community Based Forum.url 0.38kB
file0. Websites you may like/3. Download Cracked Developers Applications For Free.url 0.24kB Download Udacity, Masterclass, Lynda, PHLearn, etc Free.url 0.29kB
filePyTorch for Deep Learning Zero to Mastery.txt 18.33kB
filelesson1.mp4 137.51MB
filelesson10.mp4 8.11MB
filelesson100.mp4 33.97MB
filelesson101.mp4 29.15MB
filelesson102.mp4 57.36MB
filelesson103.mp4 73.61MB
filelesson104.mp4 72.52MB
filelesson105.mp4 29.73MB
filelesson106.mp4 77.19MB
filelesson107.mp4 57.07MB
filelesson108.mp4 34.81MB
filelesson109.mp4 56.29MB
filelesson11.mp4 26.00MB
filelesson110.mp4 21.31MB
filelesson111.mp4 34.88MB
filelesson112.mp4 28.73MB
filelesson113.mp4 68.12MB
filelesson114.mp4 25.68MB
filelesson115.mp4 47.43MB
filelesson116.mp4 119.99MB
filelesson117.mp4 99.87MB
filelesson118.mp4 76.30MB
filelesson119.mp4 113.62MB
filelesson12.mp4 23.02MB
filelesson120.mp4 18.56MB
filelesson121.mp4 50.53MB
filelesson122.mp4 33.31MB
filelesson123.mp4 40.38MB
filelesson124.mp4 32.14MB
filelesson125.mp4 93.12MB
filelesson126.mp4 41.88MB
filelesson127.mp4 51.53MB
filelesson128.mp4 64.33MB
filelesson129.mp4 46.42MB
filelesson13.mp4 36.65MB
filelesson130.mp4 24.97MB
filelesson131.mp4 80.30MB
filelesson132.mp4 46.01MB
filelesson133.mp4 63.18MB
filelesson134.mp4 21.79MB
filelesson135.mp4 45.14MB
filelesson136.mp4 72.13MB
filelesson137.mp4 55.12MB
filelesson138.mp4 49.91MB
Too many files! Click here to view them all.
Type: Course

title= {ZeroToMastery - PyTorch for Deep Learning},
journal= {},
author= {},
year= {},
url= {},
abstract= {## About

Learn PyTorch from scratch! This PyTorch course is your step-by-step guide to developing your own deep learning models using PyTorch. You’ll learn Deep Learning with PyTorch by building a massive 3-part real-world milestone project. By the end, you’ll have the skills and portfolio to get hired as a Deep Learning Engineer.

Learn PyTorch. Become a Deep Learning Engineer. Get Hired.


## Course Overview

We can guarantee (with, like, 99.57% confidence) that this is the most comprehensive, modern, and up-to-date course you will find to learn PyTorch and the cutting-edge field of Deep Learning. Daniel takes you step-by-step from an absolute beginner to becoming a master of Deep Learning with PyTorch.


## What You’ll Learn

– Everything from getting started with using PyTorch to building your own real-world models

– Why PyTorch is a fantastic way to start working in machine learning

– Understand how to integrate Deep Learning into tools and applications

– Create and utilize machine learning algorithms just like you would write a Python program

– Build and deploy your own custom trained PyTorch neural network accessible to the public

– How to take data, build a ML algorithm to find patterns, and then use that algorithm as an AI to enhance your applications

– Master deep learning and become a top candidate for recruiters seeking Deep Learning Engineers

– To expand your Machine Learning and Deep Learning skills and toolkit

– The skills you need to become a Deep Learning Engineer and get hired with a chance of making US$100,000+ / year


## What will this PyTorch course be like?

This PyTorch course is very hands-on and project based. You won’t just be staring at your screen. We’ll leave that for other PyTorch tutorials and courses.

In this course you’ll actually be:

– Running experiments

– Completing exercises to test your skills

– Building real-world deep learning models and projects to mimic real life scenarios

By the end of it all, you’ll have the skillset needed to identify and develop modern deep learning solutions that Big Tech companies encounter.

⚠ Fair warning: this course is very comprehensive. But don’t be intimidated, Daniel will teach you everything from scratch and step-by-step!


## Here’s what you’ll learn in this PyTorch course:

1. PyTorch Fundamentals — We start with the barebone fundamentals, so even if you’re a beginner you’ll get up to speed.

	In machine learning, data gets represented as a tensor (a collection of numbers). Learning how to craft tensors with PyTorch is paramount to building machine learning algorithms. In PyTorch Fundamentals we cover the PyTorch tensor datatype in-depth.

2. PyTorch Workflow — Okay, you’ve got the fundamentals down, and you’ve made some tensors to represent data, but what now?

	With PyTorch Workflow you’ll learn the steps to go from data -> tensors -> trained neural network model. You’ll see and use these steps wherever you encounter PyTorch code as well as for the rest of the course.

3. PyTorch Neural Network Classification — Classification is one of the most common machine learning problems.

	– Is something one thing or another?

	– Is an email spam or not spam?

	– Is credit card transaction fraud or not fraud?

	With PyTorch Neural Network Classification you’ll learn how to code a neural network classification model using PyTorch so that you can classify things and answer these questions.

4. PyTorch Computer Vision — Neural networks have changed the game of computer vision forever. And now PyTorch drives many of the latest advancements in computer vision algorithms.

	For example, Tesla use PyTorch to build the computer vision algorithms for their self-driving software.

	With PyTorch Computer Vision you’ll build a PyTorch neural network capable of seeing patterns in images of and classifying them into different categories.

5. PyTorch Custom Datasets — The magic of machine learning is building algorithms to find patterns in your own custom data. There are plenty of existing datasets out there, but how do you load your own custom dataset into PyTorch?

	This is exactly what you’ll learn with the PyTorch Custom Datasets section of this course.

	You’ll learn how to load an image dataset for FoodVision Mini: a PyTorch computer vision model capable of classifying images of pizza, steak and sushi (am I making you hungry to learn yet?!).

	We’ll be building upon FoodVision Mini for the rest of the course.

6. PyTorch Going Modular — The whole point of PyTorch is to be able to write Pythonic machine learning code.

	There are two main tools for writing machine learning code with Python:

	– A Jupyter/Google Colab notebook (great for experimenting)

	– Python scripts (great for reproducibility and modularity)

	In the PyTorch Going Modular section of this course, you’ll learn how to take your most useful Jupyter/Google Colab Notebook code and turn it reusable Python scripts. This is often how you’ll find PyTorch code shared in the wild.

7. PyTorch Transfer Learning — What if you could take what one model has learned and leverage it for your own problems? That’s what PyTorch Transfer Learning covers.

	You’ll learn about the power of transfer learning and how it enables you to take a machine learning model trained on millions of images, modify it slightly, and enhance the performance of FoodVision Mini, saving you time and resources.

8. PyTorch Experiment Tracking — Now we’re going to start cooking with heat by starting Part 1 of our Milestone Project of the course!

	At this point you’ll have built plenty of PyTorch models. But how do you keep track of which model performs the best?

	That’s where PyTorch Experiment Tracking comes in.

	Following the machine learning practitioner’s motto of experiment, experiment, experiment! you’ll setup a system to keep track of various FoodVision Mini experiment results and then compare them to find the best.

9. PyTorch Paper Replicating — The field of machine learning advances quickly. New research papers get published every day. Being able to read and understand these papers takes time and practice.

	So that’s what PyTorch Paper Replicating covers. You’ll learn how to go through a machine learning research paper and replicate it with PyTorch code.

	At this point you’ll also undertake Part 2 of our Milestone Project, where you’ll replicate the groundbreaking Vision Transformer architecture!

10. PyTorch Model Deployment — By this stage your FoodVision model will be performing quite well. But up until now, you’ve been the only one with access to it.

	How do you get your PyTorch models in the hands of others?

	That’s what PyTorch Model Deployment covers. In Part 3 of your Milestone Project, you’ll learn how to take the best performing FoodVision Mini model and deploy it to the web so other people can access it and try it out with their own food images.


## Meet your instructor

Your PyTorch instructor (Daniel) isn’t just a machine learning engineer with years of real-world professional experience. He has been in your shoes. He makes learning fun. He makes complex topics feel simple. He will motivate you. He will push you. And he will go above and beyond to help you succeed.

Hi, I’m Daniel Bourke!

Daniel, a self-taught Machine Learning Engineer, has worked at one of Australia’s fastest-growing artificial intelligence agencies, Max Kelsen, and is now using his expertise to teach thousands of students data science and machine learning.


## General Info:

Author(s): Daniel Bourke
Language: English
Updated: 2/2023
Videos Duration: 49h 2m 32s
Course Source:},
keywords= {},
terms= {},
license= {},
superseded= {}

Hosted by users:

Send Feedback