The Million Song Dataset.
Thierry Bertin-Mahieux and Daniel P. W. Ellis and Brian Whitman and Paul Lamere

folder msd_targz (28 files)
fileA.tar.gz 8.25GB
fileAdditionalFiles.tar.gz 758.32MB
fileB.tar.gz 8.09GB
fileC.tar.gz 8.19GB
fileD.tar.gz 8.22GB
fileE.tar.gz 8.12GB
fileF.tar.gz 8.17GB
fileG.tar.gz 8.08GB
fileH.tar.gz 8.16GB
fileI.tar.gz 8.04GB
fileJ.tar.gz 8.08GB
fileK.tar.gz 8.14GB
fileL.tar.gz 8.13GB
fileM.tar.gz 8.16GB
filemillionsongsubset.tar.gz 1.98GB
fileN.tar.gz 8.15GB
fileO.tar.gz 8.14GB
fileP.tar.gz 8.24GB
fileQ.tar.gz 8.11GB
fileR.tar.gz 8.14GB
fileS.tar.gz 8.08GB
fileT.tar.gz 8.13GB
fileU.tar.gz 8.07GB
fileV.tar.gz 8.11GB
fileW.tar.gz 8.11GB
fileX.tar.gz 8.11GB
fileY.tar.gz 8.11GB
fileZ.tar.gz 8.11GB
Type: Dataset
Tags: Dataset, Features, metadata, million, song, music

Bibtex:
@inproceedings{thierry_bertin_mahieux_2018_1415820,
author= {Thierry Bertin-Mahieux and Daniel P. W. Ellis and Brian Whitman and Paul Lamere},
title= {The Million Song Dataset.},
booktitle= {{Proceedings of the 12th International Society for 
                   Music Information Retrieval Conference}},
year= {2018},
pages= {591-596},
publisher= {ISMIR},
month= {sep},
venue= {Miami, United States},
doi= {10.5281/zenodo.1415820},
url= {https://doi.org/10.5281/zenodo.1415820},
abstract= {We introduce the Million Song Dataset, a freely-available collection of audio features and metadata for a million con- temporary popular music tracks. We describe its creation process, its content, and its possible uses. Attractive fea- tures of the Million Song Database include the range of ex- isting resources to which it is linked, and the fact that it is the largest current research dataset in our field. As an illustra- tion, we present year prediction as an example application, a task that has, until now, been difficult to study owing to the absence of a large set of suitable data. We show positive results on year prediction, and discuss more generally the future development of the dataset.},
keywords= {million, song, dataset, music, features, metadata},
terms= {},
license= {},
superseded= {}
}


Send Feedback